The Emperor's New Truncation

A Modern Fairy Tale

Many years ago there lived an

 Emperor who was so exceedingly fond of fine new clothes that he spent vast sums of money on dress. To him clothes meant more than anything else in the world. He took no interest in his army, nor did he care to go to the theatre, or to drive about in his state coach, unles it was to display his new clothes. He had different robes for every singl hour of the day.We all know how the story ends. The emperor, bare-ass naked, parades himself in front of his subjects. Only the voice of a little child declares that the emperor has no clothes.

And so it is now, with BDD. Everyone is so fond of new ideas, and they hope for new breakthroughs in PSA quantification that some embrace every proposed innovation with "ooo00s" and "ahhhhs".

We, however, are like the child who asks himself, "But does he have anything on?

We all like fairy tales. But in this time of global need for renewable energy, it i up to each of us to insure proper and correct methods for nuclear PSA, not invisible cloth.

So forgive us if this modern fairy tale u will now tell causes us to dress in less than splendor, but assuredly covering ou private parts.
seing too pedantic, the notions ot truth -ables, BDD, minterms, and minimal cut sets. For those with a more academic sent, please refer to the seminal paper, Mathematical Foundations of Minimal Cut Sets" [Rauzy2000].

4 truth table is a tabular way of -epresenting a Boolean function. If we lave a Boolean function $F(a, b)=a V b$, where "V" means OR, the truth table for he function would be:

a	b	$a \vee b$
True	True	True
True	False	True
False	True	True
False	False	False

Each row of the truth table is mutually oxrliscivo an dicinint

True False

called a directed acyclic graph, DAG) ot

 truth table, usually, we hope, a more ompact representation, built top-down. So given the same function, $F(a, b)=a V$, we might have this BDD structure:

Think of the solid lines as assigning "true" to the variable from which they emanate, the dotted lines as assigning "false", and the 1's and 0's indicating if the function is satisfied or not by the assignments. Each path in the graph is disjoint, like the rows of a truth table. We can read the graph as indicating that if a and b are true, then the function is satisfied, if a is true, but b
graph with a function called "if-thenelse", usually written ite(if, then, else), which means if a is true proceed down he left branch, if false, proceed down -he right branch. So given the graph :rom the preceding page:

Building the BDD top-down, we can represent it with this series of functions:

BDD = bdd_1
bdd_1 = ite(a,bdd_2,bdd_3)
bdd_2 = ite(b,1,1)
hdd 2 = ito(h 1) "and"ed and then "or"ed together, the same a: the disjoint paths of a BDD, or the rows of a truth table.
Using variable juxtaposition as "and", "+" as "or", and "~" as "not, we can create a minterm representation of a Boolean function, F(a,b,c) $a b+\sim a c$. The set of minterms for F are $\operatorname{MIN}(F(a, b, c))=a b c+a b \sim c+\sim a b c+\sim a \sim b c$. These representations are logically equivalent and if you build the truth table, you will see that minterms are the "true" rows of a truth table.

a	b	c	ab	$\sim a c$	F
True	True	True	True	False	True
True	True	False	True	False	True
True	False	True	False	False	False
True	False	False	False	False	False
False	True	True	False	True	True
False	True	False	False	False	False
False	False	True	False	True	True
False	False	False	False	False	False

that truth tables, BDDs, and

 minterms are mathematically equivalent representations of Boolean functions. Something cannot be true about one representation that is not true about the others.Perhaps one representation can be computed faster than another, or understood easier than another, or a given property proven more simpl than another, but we are up against a basic fact about mathematics ano equivalent representations: if I can say it with a truth table, then I car say it about a BDD, and if I can't, then I can't.

variables.

So given the previous function, $F(a, b, c)=a b+$ $\sim a c=a b c+a b \sim c+\sim a b c+\sim a \sim b c$, the min cut sets of F are $M C S(F)=a b c+a b+b c+c=a b$ c, which are the minterms, dropping negation.

The minterms of the min cut sets are MIN(MCS(F)) $=a b c+a b \sim c+\sim a b c+\sim a \sim b c+$ $a \sim b c$. Notice that there is an additional term in green for MIN(MCS(F)), a~bc, which did not exist in the minterms.

Therefore the number of minterms in the mir cut sets for a function F is always greater than, or equal to, the number of minterms of F, or mathematically, Card(MIN(MCS(F))) >= $\operatorname{Card}(M I N(F))$. This is called the upper approximation, or monotone hull, of a Boolean function.

The point of the forgoing discussions was to show one very important idea: the disjoint terms of minterms, the disjoint paths of a BDD, and the disjoint rows of a truth table are all the same thing, with the disjoint terms of the minterms of min cut sets providing an upper approximation.

But why is any of this of interest to PSA?

Because we use these representations to quantify fault trees, which are a graphical representation of Boolean equations. And what we are interested in from the PSA point of view is the probability of the top event of a fault tree.
quation in minterms or a BDD, it suffice o assign probabilities to each variable, ubstitute multiplication for "and", addition for "or", and subtract the robability for a variable from 1 for legation. Again using F:

$$
F(a, b, c)=a b+\sim a c
$$

$f \operatorname{Pr}(a)=\operatorname{Pr}(b)=\operatorname{Pr}(c)=.1$, then for
MIN (F) $=a b c+a b \sim c+\sim a b c+\sim a \sim b c$, the
$r(F)=1 e-3+9 e-3+9 e-3+8.1 e-2=1 e-1$

Ind for the minterms of the min cut set AIN(MCS(F)) $=a b c+a b \sim c+\sim a b c+\sim a \sim b$ $a \sim b c=1 e-3+9 e-3+9 e-3+8.1 e-2+9 . e$ $1.09 e-1$, the upper bound approximation

Notice that if we apply the same trick lirectly to $F(a, b, c)=a b+\sim a c$, and convex t to min cut sets, MCS(F) =a bic, we lave the rare event approximation:
[f this were the whole story, then ne know, with proofs in hand, that we can calcultate the top event probabilities in PSA accurately.

But ain't life grand? In the actual fault trees used in PSA it is mpossible, in the most important cases, to completely construct ruth tables, minterms, min cut sets, or GDs.

So we rely on truncation. We say we are only interested in values for ninterms or min cut sets or (now) 3DD paths which are greater than a certain value, the truncation cutoff, C.

Vow assume that you are

interested only in the MCS whose probability is greater that a given cutoff C. Then you can remove all the minterms whose MCS probability is lower than C, where the MCS probability (called UCSPr) of a minterm (or of a product in general) is defined as the product of positive literal probabilities:

$$
\begin{gathered}
\operatorname{Pr}(\sim a b c)=(1-\operatorname{Pr}(a)) * \operatorname{Pr}(b) * \operatorname{Pr}(c) \\
M C S P r(\sim a b c)=\operatorname{Pr}(b) * \operatorname{Pr}(c)
\end{gathered}
$$

-et us denote by F/C the restriction of = to the minterms whose MCS probability is bigger than C and let UCS(F)/C be the set of MCS of F whose probability is bigger than c. Then the following theorem holds Rauzy2000]:

$$
\operatorname{MCS}(F / C)=\operatorname{MCS}(F) / C
$$

Assume again that $\operatorname{Pr}(a)=\operatorname{Pr}(b)=\operatorname{Pr}(c)$ $=0.1$ and that $C=0.05$. Then we have:
$\operatorname{UCS}(F / C(a, b, c))=a b c+a b \sim c+\sim a b c+$ va~bc (minterms whose MCS probability is lower than C are in red).

Therefore:

$$
\begin{aligned}
& \operatorname{MCS}(F / C)=\operatorname{MCS}(\sim a \sim b c)=\{c\} \\
& =\operatorname{MCS}(F) / C(=\{a b, c\})
\end{aligned}
$$

```
UIE Ny IIIE vVUy IIIUI
```

$\operatorname{IN}(M C S(F / C))=M I N(c)=a b c+a \sim b c+$ $a b c+\sim a \sim b \sim c$, and in therefore:
$\operatorname{IN}(M C S(F / C))=M I N(F) \cup\{A .-B . C\} /$
1.B. $-C\}$ (where U stands for the union id / stands for the set difference)

0 , what you get with truncated interms is neither an upper-
proximation (for you remove $a b \sim c$), nor under-approximation (for you add -bc), but an approximation of unknown rr.

1 other words, truncating minterms, ruth tables or GDs works but only from MCS point of view, in other words, only we include no negation.

```
uncation work with BDDs?
```

ssume that you truncate by considering ie probability of branches as you build t DD. Then you go nowhere, due to the secific structure of GDs. Look at the unction F :

$$
F=a_{1}+a_{2}+\ldots a_{n}
$$

$D(F)=b d d _1$
d_1 = item($a_{1}, 1, b d d _$
$d^{d} 2=i+e\left(a_{2}, 1, b d d\right.$

$1-\operatorname{Pr}\left(a_{1}\right)$

\mathbf{a}_{2}

Elirililuliry ul Druricries wriust
probability is below the cutoff C. Then a
notability is below
e build this BDD,

1

$$
\begin{array}{ll}
a_{n} & \\
& 1-\operatorname{Pr}\left(a_{n}\right)
\end{array}
$$

Ind we truncate counting the robability of 0 -branches, we may each a point where $\left(1-\operatorname{Pr}\left(a_{1}\right)\right)^{\star} . . . *(1-$ $\left.r\left(a_{i}\right)\right)<C$, therefore eliminating some ierfectly valid MCS, and in doing so, under estimate the probability of the unction F

$$
1-\operatorname{Pr}\left(\mathrm{a}_{2}\right)
$$

10

$$
-2
$$

diplex ruriciro, we rial au n sortie
erfectly invalid MCS, for example, let H and G be Boolean functions such that:

$$
\begin{aligned}
& H=\sim F G \\
& F=a_{1}+\ldots+a_{n} \\
& G=a_{n} B
\end{aligned}
$$

he truncation of F may eliminate the $M C$ $\left.{ }_{n}\right\}$, which is part of the function G, and v id up with an invalid MCS, $a_{n} B$, giving us ier estimation.
ogether, BDD with truncation gives us a proximation of unknown error.
otice that this is the same result as interm truncation, which is what we wou <sect since they are equivalent presentations. Moreover, this is the me objection which was raised concerni ie Destructive Truth Table Method and

No Free Lunch

As we said in CWTPRA, the rare event is fine r what it does
Proposed method is supposed to help with gation, but this is where it fails (success anches, delete-terms, recovery actions)
No mention in other papers of the limitations the methods
No mention of previous work
What about keeping track of what is trunacte no mention of modules or variable ordering Takes away from the real focus which is mod arity and transportability etc.

3ut among the crowds a little child suddenly gasped out, "But he hasn't got anything on." And the people began to whisper to one another what the child had said. "He hasn't got anything on." "There's a little child saying he hasn't got anything on." Till everyone was saying, "But he hasn't got anything on." The Emperor himself had the uncomfortable feeling that what they were whispering was only too true.

