
The Emperor’s New
Truncation

A Modern Fairy Tale

Once upon a time …
Many years ago there lived an
Emperor who was so exceedingly
fond of fine new clothes that he
spent vast sums of money on dress.
To him clothes meant more than
anything else in the world. He took
no interest in his army, nor did he
care to go to the theatre, or to
drive about in his state coach, unless
it was to display his new clothes. He
had different robes for every single
hour of the day.

We all know how the story ends. The
emperor, bare-ass naked, parades
himself in front of his subjects. Only
the voice of a little child declares that
the emperor has no clothes.

And so it is now, with BDD. Everyone is
so fond of new ideas, and they hope for
new breakthroughs in PSA quantification,
that some embrace every proposed
innovation with “ooooos” and “ahhhhs”.

We, however, are like the child who asks
himself, “But does he have anything on?”

We all like fairy tales. But in this time
of global need for renewable energy, it is
up to each of us to insure proper and
correct methods for nuclear PSA, not
invisible cloth.

So forgive us if this modern fairy tale we
will now tell causes us to dress in less
than splendor, but assuredly covering our
private parts.

being too pedantic, the notions of truth
tables, BDD, minterms, and minimal cut
sets. For those with a more academic
bent, please refer to the seminal paper,
“Mathematical Foundations of Minimal
Cut Sets” [Rauzy2000].

A truth table is a tabular way of
representing a Boolean function. If we
have a Boolean function F(a,b) = a V b,
where “V” means OR, the truth table for
the function would be:

FalseFalseFalse

TrueTrueFalse

TrueFalseTrue

TrueTrueTrue

a V bba

Each row of the truth table is mutually
exclusive, or disjoint.

(called a directed acyclic graph, DAG) of
a truth table, usually, we hope, a more
compact representation, built top-down.
So given the same function, F(a,b) = a V
b, we might have this BDD structure:

Think of the solid lines as assigning
“true” to the variable from which they
emanate, the dotted lines as assigning
“false”, and the 1’s and 0’s indicating if
the function is satisfied or not by the
assignments. Each path in the graph is
disjoint, like the rows of a truth table.
We can read the graph as indicating
that if a and b are true, then the
function is satisfied, if a is true, but b
false, the function is satisfied, and so

graph with a function called “if-then-
else”, usually written ite(if, then, else),
which means if a is true proceed down
the left branch, if false, proceed down
the right branch. So given the graph
from the preceding page:

Building the BDD top-down, we can
represent it with this series of
functions:

BDD = bdd_1
bdd_1 = ite(a,bdd_2,bdd_3)
bdd_2 = ite(b,1,1)
bdd_3 = ite(b,1,0)

Boolean function as an equation of variables
“and”ed and then “or”ed together, the same as
the disjoint paths of a BDD, or the rows of a
truth table.

Using variable juxtaposition as “and”, “+” as
“or”, and “~” as “not, we can create a minterm
representation of a Boolean function, F(a,b,c) =
ab + ~ac. The set of minterms for F are
MIN(F(a,b,c)) = abc + ab~c + ~abc + ~a~bc.

These representations are logically equivalent,
and if you build the truth table, you will see
that minterms are the “true” rows of a truth
table.

FalseFalseFalseFalseFalseFalse

TrueTrueFalseTrueFalseFalse

FalseFalseFalseFalseTrueFalse

TrueTrueFalseTrueTrueFalse

FalseFalseFalseFalseFalseTrue

FalseFalseFalseTrueFalseTrue

TrueFalseTrueFalseTrueTrue

TrueFalseTrueTrueTrueTrue

F~acabcba

What is important to note here is
that truth tables, BDDs, and
minterms are mathematically
equivalent representations of
Boolean functions. Something
cannot be true about one
representation that is not true
about the others.

Perhaps one representation can be
computed faster than another, or
understood easier than another, or
a given property proven more simply
than another, but we are up against
a basic fact about mathematics and
equivalent representations: if I can
say it with a truth table, then I can
say it about a BDD, and if I can’t,
then I can’t.

MCS, which are minterms without negated
variables.

So given the previous function, F(a,b,c) = ab +
~ac = abc + ab~c + ~abc + ~a~bc, the min cut
sets of F are MCS(F) = abc + ab + bc + c = ab +
c, which are the minterms, dropping negation.

The minterms of the min cut sets are
MIN(MCS(F)) = abc + ab~c + ~abc + ~a~bc +
a~bc. Notice that there is an additional term
in green for MIN(MCS(F)), a~bc, which did
not exist in the minterms.

Therefore the number of minterms in the min
cut sets for a function F is always greater
than, or equal to, the number of minterms of
F, or mathematically, Card(MIN(MCS(F))) >=
Card(MIN(F)). This is called the upper
approximation, or monotone hull, of a Boolean
function.

The point of the forgoing discussions
was to show one very important idea:
the disjoint terms of minterms, the
disjoint paths of a BDD, and the
disjoint rows of a truth table are all
the same thing, with the disjoint terms
of the minterms of min cut sets
providing an upper approximation.

But why is any of this of interest to
PSA?

Because we use these representations
to quantify fault trees, which are a
graphical representation of Boolean
equations. And what we are interested
in from the PSA point of view is the
probability of the top event of a fault
tree.

To calculate the probability of a Boolean
equation in minterms or a BDD, it suffices
to assign probabilities to each variable,
substitute multiplication for “and”,
addition for “or”, and subtract the
probability for a variable from 1 for
negation. Again using F:

F(a,b,c) = ab + ~ac

If Pr(a) = Pr(b) = Pr(c) = .1, then for
MIN(F) = abc + ab~c + ~abc + ~a~bc, the
Pr(F) = 1e-3 + 9e-3 + 9e-3 + 8.1e-2 = 1e-1.

And for the minterms of the min cut sets,
MIN(MCS(F)) = abc + ab~c + ~abc + ~a~bc
+ a~bc = 1e-3 + 9e-3 + 9e-3 + 8.1e-2 + 9.e
= 1.09e-1, the upper bound approximation.

Notice that if we apply the same trick
directly to F(a,b,c) = ab + ~ac, and convert
it to min cut sets, MCS(F) = ab + c, we
have the rare event approximation:
Pr(MCS(F)) = .01 + .1 = 1.1e-1.

If this were the whole story, then
we know, with proofs in hand, that
we can calcultate the top event
probabilities in PSA accurately.

But ain’t life grand? In the actual
fault trees used in PSA it is
impossible, in the most important
cases, to completely construct
truth tables, minterms, min cut
sets, or BDDs.

So we rely on truncation. We say
we are only interested in values for
minterms or min cut sets or (now)
BDD paths which are greater than
a certain value, the truncation
cutoff, C.

Now assume that you are
interested only in the MCS whose
probability is greater that a given
cutoff C. Then you can remove all
the minterms whose MCS
probability is lower than C, where
the MCS probability (called
MCSPr) of a minterm (or of a
product in general) is defined as
the product of positive literal
probabilities:

Pr(~abc) = (1-Pr(a)) * Pr(b) * Pr(c)
MCSPr(~abc) = Pr(b) * Pr(c)

Let us denote by F/C the restriction of
F to the minterms whose MCS
probability is bigger than C and let
MCS(F)/C be the set of MCS of F
whose probability is bigger than c. Then
the following theorem holds
[Rauzy2000]:

MCS(F/C) = MCS(F)/C

Assume again that Pr(a) = Pr(b) = Pr(c)
= 0.1 and that C = 0.05. Then we have:

MCS(F/C(a,b,c)) = abc + ab~c + ~abc +
~a~bc (minterms whose MCS
probability is lower than C are in red).

Therefore:
MCS(F/C) = MCS(~a~bc) = { c }
= MCS(F)/C (= { ab, c })

Note by the way that

MIN(MCS(F/C)) = MIN(c) = abc + a~bc +
abc + ~a~b~c, and in therefore:

MIN(MCS(F/C)) = MIN(F) U {A.-B.C} /
{A.B.-C} (where U stands for the union
and / stands for the set difference)

So, what you get with truncated
minterms is neither an upper-
approximation (for you remove ab~c), nor
a under-approximation (for you add
a~bc), but an approximation of unkown
error.

In other words, truncating minterms,
truth tables or BDDs works but only from
an MCS point of view, in other words, only
if we include no negation.

Now the question is does probability
truncation work with BDDs?

Assume that you truncate by considering
the probability of branches as you build the
BDD. Then you go nowhere, due to the
specific structure of BDDs. Look at the
function F:

F = a1 + a2 + … an

BDD(F) = bdd_1
bdd_1 = ite(a1,1, bdd_2)
bdd_2 = ite(a2,1, bdd_3)

bdd_n = ite(an,1,0)

by eliminating all branches whose
probability is below the cutoff C. Then as
we build this BDD,

and we truncate counting the
probability of 0-branches, we may
reach a point where (1-Pr(a1))*…*(1-
Pr(ai)) < C, therefore eliminating some
perfectly valid MCS, and in doing so,
under estimate the probability of the
function F.

complex function, we may add some
perfectly invalid MCS, for example, let H,
F, and G be Boolean functions such that:

H = ~FG
F = a1 + … + an

G = anB

The truncation of F may eliminate the MCS
{an}, which is part of the function G, and we
end up with an invalid MCS, anB, giving us an
over estimation.

Together, BDD with truncation gives us an
approximation of unknown error.

Notice that this is the same result as
minterm truncation, which is what we would
expect since they are equivalent
representations. Moreover, this is the
same objection which was raised concerning
the Destructive Truth Table Method and
Direct Probability Calculation.

No Free Lunch
As we said in CWTPRA, the rare event is fine

for what it does
Proposed method is supposed to help with

negation, but this is where it fails (success
branches, delete-terms, recovery actions)

No mention in other papers of the limitations
of the methods

No mention of previous work
What about keeping track of what is trunacted
no mention of modules or variable ordering
Takes away from the real focus which is model

clarity and transportability
etc.

Happily ever after?
But among the crowds a little child
suddenly gasped out, "But he hasn't got
anything on." And the people began to
whisper to one another what the child
had said. "He hasn't got anything on."
"There's a little child saying he hasn't
got anything on." Till everyone was
saying, "But he hasn't got anything on."
The Emperor himself had the
uncomfortable feeling that what they
were whispering was only too true.

