
The Emperor’s New
Truncation

A Modern Fairy Tale



Once upon a time …
Many years ago there lived an 
Emperor who was so exceedingly 
fond of fine new clothes that he 
spent vast sums of money on dress. 
To him clothes meant more than 
anything else in the world. He took 
no interest in his army, nor did he 
care to go to the theatre, or to 
drive about in his state coach, unless 
it was to display his new clothes. He 
had different robes for every single 
hour of the day.



We all know how the story ends.  The 
emperor, bare-ass naked, parades 
himself in front of his subjects.  Only 
the voice of a little child declares that 
the emperor has no clothes.

And so it is now, with BDD.  Everyone is 
so fond of new ideas, and they hope for 
new breakthroughs in PSA quantification, 
that some embrace every proposed 
innovation with “ooooos” and “ahhhhs”.

We, however, are like the child who asks 
himself, “But does he have anything on?”

We all like fairy tales.  But in this time 
of global need for renewable energy, it is 
up to each of us to insure proper and 
correct methods for nuclear PSA, not 
invisible cloth.

So forgive us if this modern fairy tale we 
will now tell causes us to dress in less 
than splendor, but assuredly covering our 
private parts.



being too pedantic, the notions of truth 
tables, BDD, minterms, and minimal cut 
sets.  For those with a more academic 
bent, please refer to the seminal paper, 
“Mathematical Foundations of Minimal 
Cut Sets” [Rauzy2000].

A truth table is a tabular way of 
representing a Boolean function.  If we 
have a Boolean function F(a,b) = a V b, 
where “V” means OR, the truth table for 
the function would be:

FalseFalseFalse

TrueTrueFalse

TrueFalseTrue

TrueTrueTrue

a V bba

Each row of the truth table is mutually 
exclusive, or disjoint.



(called a directed acyclic graph, DAG) of 
a truth table, usually, we hope, a more 
compact representation, built top-down.
So given the same function, F(a,b) = a V 
b, we might have this BDD structure:

Think of the solid lines as assigning 
“true” to the variable from which they 
emanate, the dotted lines as assigning 
“false”, and the 1’s and 0’s indicating if 
the function is satisfied or not by the 
assignments.  Each path in the graph is 
disjoint, like the rows of a truth table.
We can read the graph as indicating 
that if a and b are true, then the 
function is satisfied, if a is true, but b 
false, the function is satisfied, and so 



graph with a function called “if-then-
else”, usually written ite(if, then, else), 
which means if a is true proceed down 
the left branch, if false, proceed down 
the right branch.  So given the graph 
from the preceding page:

Building the BDD top-down, we can 
represent it with this series of 
functions:

BDD = bdd_1
bdd_1 = ite(a,bdd_2,bdd_3)
bdd_2 = ite(b,1,1)
bdd_3 = ite(b,1,0)



Boolean function as an equation of variables 
“and”ed and then “or”ed together, the same as 
the disjoint paths of a BDD, or the rows of a 
truth table.

Using variable juxtaposition as “and”, “+” as 
“or”, and “~” as “not, we can create a minterm
representation of a Boolean function, F(a,b,c) = 
ab + ~ac.  The set of minterms for F are 
MIN(F(a,b,c)) =  abc + ab~c + ~abc + ~a~bc.

These representations are logically equivalent, 
and if you build the truth table, you will see 
that minterms are the “true” rows of a truth 
table.

FalseFalseFalseFalseFalseFalse

TrueTrueFalseTrueFalseFalse

FalseFalseFalseFalseTrueFalse

TrueTrueFalseTrueTrueFalse

FalseFalseFalseFalseFalseTrue

FalseFalseFalseTrueFalseTrue

TrueFalseTrueFalseTrueTrue

TrueFalseTrueTrueTrueTrue

F~acabcba



What is important to note here is 
that truth tables, BDDs, and 
minterms are mathematically 
equivalent representations of 
Boolean functions.  Something 
cannot be true about one 
representation that is not true 
about the others.

Perhaps one representation can be 
computed faster than another, or 
understood easier than another, or 
a given property proven more simply 
than another, but we are up against 
a basic fact about mathematics and 
equivalent representations: if I can 
say it with a truth table, then I can 
say it about a BDD, and if I can’t, 
then I can’t.



MCS, which are minterms without negated 
variables.

So given the previous function, F(a,b,c) = ab + 
~ac = abc + ab~c + ~abc + ~a~bc, the min cut 
sets of F are MCS(F) = abc + ab + bc + c = ab + 
c, which are the minterms, dropping negation.

The minterms of the min cut sets are 
MIN(MCS(F)) = abc + ab~c + ~abc + ~a~bc + 
a~bc.  Notice that there is an additional term 
in green for MIN(MCS(F)), a~bc, which did 
not exist in the minterms.

Therefore the number of minterms in the min 
cut sets for a function F is always greater 
than, or equal to, the number of minterms of 
F, or mathematically, Card(MIN(MCS(F))) >= 
Card(MIN(F)).  This is called the upper 
approximation, or monotone hull, of a Boolean 
function.



The point of the forgoing discussions 
was to show one very important idea: 
the disjoint terms of minterms, the 
disjoint paths of a BDD, and the 
disjoint rows of a truth table are all 
the same thing, with the disjoint terms 
of the minterms of min cut sets 
providing an upper approximation.

But why is any of this of interest to 
PSA?

Because we use these representations 
to quantify fault trees, which are a 
graphical representation of Boolean 
equations.  And what we are interested 
in from the PSA point of view is the 
probability of the top event of a fault 
tree.



To calculate the probability of a Boolean 
equation in minterms or a BDD, it suffices 
to assign probabilities to each variable, 
substitute multiplication for “and”, 
addition for “or”, and subtract the 
probability for a variable from 1 for 
negation.  Again using F:

F(a,b,c) = ab + ~ac

If Pr(a) = Pr(b) = Pr(c) = .1, then for 
MIN(F) = abc + ab~c + ~abc + ~a~bc, the 
Pr(F) = 1e-3 + 9e-3 + 9e-3 + 8.1e-2 = 1e-1.

And for the minterms of the min cut sets, 
MIN(MCS(F)) = abc + ab~c + ~abc + ~a~bc
+ a~bc = 1e-3 + 9e-3 + 9e-3 + 8.1e-2 + 9.e
= 1.09e-1, the upper bound approximation.

Notice that if we apply the same trick 
directly to F(a,b,c) = ab + ~ac, and convert 
it to min cut sets, MCS(F) = ab + c, we 
have the rare event approximation: 
Pr(MCS(F)) = .01 + .1 = 1.1e-1.



If this were the whole story, then 
we know, with proofs in hand, that 
we can calcultate the top event 
probabilities in PSA accurately.

But ain’t life grand?  In the actual 
fault trees used in PSA it is 
impossible, in the most important 
cases, to completely construct 
truth tables, minterms, min cut 
sets, or BDDs.

So we rely on truncation.  We say 
we are only interested in values for 
minterms or min cut sets or (now) 
BDD paths which are greater than 
a certain value, the truncation 
cutoff, C.



Now assume that you are 
interested only in the MCS whose 
probability is greater that a given 
cutoff C. Then you can remove all 
the minterms whose MCS 
probability is lower than C, where 
the MCS probability (called 
MCSPr) of a minterm (or of a 
product in general) is defined as 
the product of positive literal 
probabilities:

Pr(~abc) = (1-Pr(a)) * Pr(b) * Pr(c)
MCSPr(~abc) = Pr(b) * Pr(c)



Let us denote by F/C the restriction of 
F to the minterms whose MCS 
probability is bigger than C and let 
MCS(F)/C be the set of MCS of F 
whose probability is bigger than c. Then 
the following theorem holds 
[Rauzy2000]:

MCS(F/C) = MCS(F)/C

Assume again that Pr(a) = Pr(b) = Pr(c) 
= 0.1 and that C = 0.05. Then we have:

MCS(F/C(a,b,c)) = abc + ab~c + ~abc + 
~a~bc (minterms whose MCS 
probability is lower than C are in red).

Therefore:
MCS(F/C) = MCS(~a~bc ) = { c }       
= MCS(F)/C (= { ab, c } )



Note by the way that

MIN(MCS(F/C)) = MIN(c) = abc + a~bc + 
abc + ~a~b~c, and in therefore:

MIN(MCS(F/C)) = MIN(F) U {A.-B.C} / 
{A.B.-C}  (where U stands for the union 
and / stands for the set difference)

So, what you get with truncated 
minterms is neither an upper-
approximation (for you remove ab~c), nor 
a under-approximation (for you add 
a~bc), but an approximation of unkown
error.

In other words, truncating minterms, 
truth tables or BDDs works but only from 
an MCS point of view, in other words, only 
if we include no negation.



Now the question is does probability 
truncation work with BDDs? 

Assume that you truncate by considering 
the probability of branches as you build the 
BDD. Then you go nowhere, due to the 
specific structure of BDDs.  Look at the 
function F:

F = a1 + a2 + … an

BDD(F) = bdd_1
bdd_1 = ite(a1,1, bdd_2) 
bdd_2 = ite(a2,1, bdd_3)

bdd_n = ite(an,1,0)



by eliminating all branches whose 
probability is below the cutoff C.  Then as 
we build this BDD, 

and we truncate counting the 
probability of 0-branches, we may 
reach a point where (1-Pr(a1))*…*(1-
Pr(ai)) < C, therefore eliminating some 
perfectly valid MCS, and in doing so, 
under estimate the probability of the 
function F.



complex function, we may add some 
perfectly invalid MCS, for example, let H, 
F, and G be Boolean functions such that:

H = ~FG
F = a1 + … + an

G = anB

The truncation of F may eliminate the MCS 
{an}, which is part of the function G, and we 
end up with an invalid MCS, anB, giving us an 
over estimation.

Together, BDD with truncation gives us an 
approximation of unknown error.

Notice that this is the same result as 
minterm truncation, which is what we would 
expect since they are equivalent 
representations.  Moreover, this is the 
same objection which was raised concerning 
the Destructive Truth Table Method and 
Direct Probability Calculation.



No Free Lunch
As we said in CWTPRA, the rare event is fine 

for what it does
Proposed method is supposed to help with 

negation, but this is where it fails (success 
branches, delete-terms, recovery actions)

No mention in other papers of the limitations 
of the methods

No mention of previous work
What about keeping track of what is trunacted
no mention of modules or variable ordering
Takes away from the real focus which is model 

clarity and transportability
etc.



Happily ever after?
But among the crowds a little child 
suddenly gasped out, "But he hasn't got 
anything on." And the people began to 
whisper to one another what the child 
had said. "He hasn't got anything on." 
"There's a little child saying he hasn't 
got anything on." Till everyone was 
saying, "But he hasn't got anything on." 
The Emperor himself had the 
uncomfortable feeling that what they 
were whispering was only too true. 


