
1

Software Risk
Assessment

Analyzing the Fallible
Machine

The Open PSA Initiative

A Blending of Disciplines

• Systems Engineering

• Software Reliability

• Software System-Safety

• Probabilistic Risk Assessment

• Software Engineering

• Software Development
Management

2

Essential Properties of
Software

• Software is constructed from human
thought, or reason.

• The material sciences of software are
mathematics and cognitive sciences.

• Its physical existence is a set of instructions
in an English-like code.

• Software does not wear out; but it does get
over-maintained or over-changed.

• Each software construction is unique.

• Software is combinatorially explosive with
respect to possible execution paths.

• When software fails, no deformations or
breakage occur.

• Software fails with little, if any, advanced
warning (we don’t hear the gears grinding).

• Software errors exemplify action at a
distance.

Software System Failures
• Failures are at the intersections of
system viewpoints

• Software system failures are disconnects
between users, software writers, the
operating environment, and the
computing machine

3

Systems Engineering

• Hierarchical Approach

• Software is NOT a Standalone
Device

• Software is a Component in a
System

– Software controlled devices

– Software supported decisions

• Concern is Primarily with
Systems Effects of Software
Errors

– Therac 25

– Precision Errors

Software Reliability
• Software is a Product which does
NOT perform Perfectly

• Both Parallels and Differences
Between Hardware and Software
Reliability

• Refers to a Collection of Concepts

– Number of software errors

– Software RAM

– Software failure rate (F, R, z, H)

– MTTF or MTBF

• Techniques which Lower Frequency
and Consequences of Failures

• Measurement and Modeling of
Probability of Failure

4

First, Some Definitions:

• Fault

– Something wrong in a program

• Error

– A manifestation of a FAULT during
software operation

• Failure

– An ERROR which interferes with
system operation

• Bug

– Any of the above

• Feature

– A BUG to which users have
become accustomed

Software Error Model
Definitions

5

Error Removal Rate for
Two Large Programs

Reliability Definitions

6

The Bathtub Curve of
Failure Rates

• By studying this curve for electrical or
mechanical failure rates we see that:

– Burn-in minimizes early failures

– Scheduled maintenance minimizes late
failures

– Operational failures happen at a
constant rate

• Software renames things a bit:

– Burn-in is code release

– Wear-out is code maintenance

The Constant Hazard
Model

7

The Constant Hazard
Model

Normalizing the Software
Error Model

• Cumulative Errors per 1000
Instructions for Program A

• We Normalize the Error Rate to the
Number of Instructions in a program:

• Notice that:

8

Software Failure Rate
Model

• Failure Rate is Proportional to
Number of Remaining Errors

– Intuitive

– Model is Simple

– Musa has Data to Support

• Using a Constant Hazard Model:

Example of Failure Rate
Estimation

• Estimation of Model Parameters

After 1 month of integration testing, a 25,000 line long program was found

to have 12 errors. Since about 5 tests a day were run at 1 hour/test, the

average MTTF was 8 hrs. After 2 months, 18 total errors were found with

a MTTF of 12 hrs.

9

Estimation Example

Estimation will change if a different
error removal rate is assumed or if it
changes during testing.

Reliability and Failure
Rates

• Specification

– Failure rates should be based on
measurements during field operation of
similar successful and unsuccessful
software.

• Prediction

– Early prediction requires a similar project
for study and for failure rate model
parameters; in short, a database.

• Measurement

– Record running hours of program during
test and simulation; count software failures;
calculate failure rate during development at
several points.

• Confirmation

– Confirm, or update, model during field test
and early operation.

10

Software System-Safety

• Software Hazard Identification

• Hazard Assessment

– System Impact

– Consequence Criticality

– Mitigation Possibilities

• Software Failure Mode
Identification

• Design Software “devices” to
Eliminate or Control Hazards

Tools and Techniques for
Software System-Safety

Analysis
• Integrated into the Software Life-
cycle

• Analysis is Iterative

• Code Walkthroughs

• Safety Critical Functions and
Variable Analysis

• HAZOPs

• Fault Tree Analysis

• Software Root Cause Analysis

11

Code Walkthroughs

• A Structured Way to Represent
code

• Frame or Timing Diagrams

• Flow Diagrams

• Interaction Diagrams

• Mathematical Proofs

Principal Segments for
Propellant Valve Control

12

13

Mathematical Proofs
• Floyd/Hoare (1975)

– I/O Assertion Method

– Loop Invarient Statements

– Symbolic Execution

– Hand/Automated Proofs

– Assertions and Invariants Extremely
Difficult to Formulate

• D. Parnas (1991)

– Rewrite Requirements into A-7 Event and
Condition Tables

– Handproof using Functional Abstraction
called Program Function Tables

– Only Proves that Program Fulfills
Requirements

– At Ontario-Hydro, 7,000 LOC took 30
man/years

• Proof Procedure is as much in question as
the Code

14

Safety Critical Variable
Analysis

15

16

17

Software Hazard Analysis
Report

Software Fault Tree

18

Software Error Root
Cause Analysis

• For Each Project the Following Data
Should be Kept

– Life-cycle used

– Start and end date for each phase

– Effort spent in each phase

– Development Environment

– Programming experience

– SEI Index

– Number of lines of code

– Source language

– Target hardware

• For Each Failure, a Summary and Data
Record Should be Created

Software Error Root
Cause Analysis Report

19

Some Observations

The Trouble with Testing

• Hecht’s Law (1992)

– Infrequently Executed Code has a High
Failure Rate

• Redundancy Management

• Exception Handling

• Initialization

• Calibration

– Off-nominal Conditions are a Prominent
Cause of Failure in Well-tested Systems

– Test Profile must be Rich in Off-nominal
Conditions

– Software Telemetry Needed

• The Butler/Finelli Observations (1991)

– Reliability Quantification to Low Levels is
Statistically Infeasible

– Separately Programmed Versions do
NOT Fail Independently

20

A Testing Example

Software Risk Assessment
Methodology

• Elements of PSA

– Uncertainties

– Bayes’ Theorem

– Scenarios

• Master Logic Diagrams (MLD)

• Event Sequence Diagrams (ESD)

• Initiating Event Fault Trees

– Propagation of Uncertainties

• Synthesis into a Programmatic Approach

– Hierarchical Analysis

– Quantitative Methods from Software
Reliability

– Qualitative Methods from Software
System-Safety

21

Uncertainties about
Failure Rates

Criteria for Calculation of
an Application Similarity

Index
• Design

• Operational Profile

• Type of Project

• Size of Code

• Complexity Metrics

• Development Environment

• Language Used

• Total Test Time

Similarity index is calculated by solving for the
principal eigenvector of an application
comparison matrix.

22

Complexity Metrics
• Measures

– Size of Code

– Number of Branches

– Program Structure

– Flow of Control

• Used on the Subprogram Level

• Commonly Used Metrics

– SLOC

– McCabe’s Cyclomatic Complexity

– NPATH

– Halstead Software Science

• Highly Correlated with Each other

• Moderate Correlation between
Complexity Thresholds and Failure
Rates

23

Draft MLD for OP

24

Draft Engine Level ESD
for OP Initiated Scenario
Main Stage Closed Loop

Control

Draft Example Fault Tree
for Initiating Event

25

Propagation of
Uncertainties

• Event Sequence Diagrams are
Used to Construct Event Trees

• Pivotal Events become Top
Events

• Software Pivotal Events are
Intermixed with Phenomenal and
Failure Pivotal Events

• Each Path through an Event Tree
Depicts a Possible Scenario

• Probability Distributions for each
Scenario are created by Monte
Carlo Simulation

Steps in an SRA

• Review Software

– Purpose

– Functions

– Construction

– Operation

– Software Engineering

• Review Controls

– Reliability Models

– Failure Data

– Problem Reports

– Testing Program

• Develop Scenarios

– Add to Existing or Create New Scenarios

– Employ

• MLDs

• ESDs

• SFTs

• Event Trees

26

Steps in an SRA
(Continued)

• Collect Data
– Four types of data

• Operational failure data and time
• Test data and time
• Failure Rate from similar applications
• Judgment from expertise and experience

– Develop prior distributions
– Modify with test data
– Develop likelihood functions
– Create application specific data
– Probability (Critical Failure | Failure)

• Allocate failure rate over the software
functions
– By fraction of time during nominal processing
– By Proportion of Similar Failures
– By Complexity of Functions in Scenario
– By Expert Elicitation

• Quantify Scenarios

