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Software Risk 
Assessment

Analyzing the Fallible 
Machine

The Open PSA Initiative

A Blending of Disciplines

• Systems Engineering

• Software Reliability

• Software System-Safety

• Probabilistic Risk Assessment

• Software Engineering

• Software Development 
Management
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Essential Properties of 
Software

• Software is constructed from human 
thought, or reason.

• The material sciences of software are 
mathematics and cognitive sciences.

• Its physical existence is a set of instructions 
in an English-like code.

• Software does not wear out; but it does get 
over-maintained or over-changed.

• Each software construction is unique.

• Software is combinatorially explosive with 
respect to possible execution paths.

• When software fails, no deformations or 
breakage occur.

• Software fails with little, if any, advanced 
warning (we don’t hear the gears grinding).

• Software errors exemplify action at a 
distance.

Software System Failures
• Failures are at the intersections of 
system viewpoints

• Software system failures are disconnects 
between users, software writers, the 
operating environment, and the        
computing machine
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Systems Engineering

• Hierarchical Approach

• Software is NOT a Standalone 
Device

• Software is a Component in a 
System

– Software controlled devices

– Software supported decisions

• Concern is Primarily with 
Systems Effects of Software 
Errors

– Therac 25

– Precision Errors

Software Reliability
• Software is a Product which does 
NOT perform Perfectly

• Both Parallels and Differences 
Between Hardware and Software 
Reliability

• Refers to a Collection of Concepts

– Number of software errors

– Software RAM

– Software failure rate (F, R, z, H)

– MTTF or MTBF

• Techniques which Lower Frequency 
and Consequences of Failures

• Measurement and Modeling of 
Probability of Failure
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First, Some Definitions:

• Fault

– Something wrong in a program

• Error

– A manifestation of a FAULT during 
software operation

• Failure

– An ERROR which interferes with 
system operation

• Bug

– Any of the above

• Feature

– A BUG to which users have 
become accustomed

Software Error Model 
Definitions
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Error Removal Rate for 
Two Large Programs

Reliability Definitions



6

The Bathtub Curve of 
Failure Rates

• By studying this curve for electrical or 
mechanical failure rates we see that:

– Burn-in minimizes early failures

– Scheduled maintenance minimizes late 
failures

– Operational failures happen at a 
constant rate

• Software renames things a bit:

– Burn-in is code release

– Wear-out is code maintenance

The Constant Hazard 
Model
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The Constant Hazard 
Model

Normalizing the Software 
Error Model

• Cumulative Errors per 1000 
Instructions for Program A

• We Normalize the Error Rate to the 
Number of Instructions in a program:

• Notice that:
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Software Failure Rate 
Model

• Failure Rate is Proportional to 
Number of Remaining Errors

– Intuitive

– Model is Simple

– Musa has Data to Support

• Using a Constant Hazard Model:

Example of Failure Rate 
Estimation

• Estimation of Model Parameters

After 1 month of integration testing, a 25,000 line long program was found 

to have 12 errors.  Since about 5 tests a day were run at 1 hour/test, the 

average MTTF was 8 hrs.  After 2 months, 18 total errors were found with 

a MTTF of 12 hrs.
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Estimation Example

Estimation will change if a different 
error removal rate is assumed or if it 
changes during testing.

Reliability and Failure 
Rates

• Specification

– Failure rates should be based on 
measurements during field operation of 
similar successful and unsuccessful 
software.

• Prediction

– Early prediction requires a similar project 
for study and for failure rate model 
parameters; in short, a database.

• Measurement

– Record running hours of program during 
test and simulation; count software failures; 
calculate failure rate during development at 
several points.

• Confirmation

– Confirm, or update, model during field test 
and early operation.
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Software System-Safety

• Software Hazard Identification

• Hazard Assessment

– System Impact

– Consequence Criticality

– Mitigation Possibilities

• Software Failure Mode 
Identification

• Design Software “devices” to 
Eliminate or Control Hazards

Tools and Techniques for 
Software System-Safety 

Analysis
• Integrated into the Software Life-
cycle

• Analysis is Iterative

• Code Walkthroughs

• Safety Critical Functions and 
Variable Analysis

• HAZOPs

• Fault Tree Analysis

• Software Root Cause Analysis
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Code Walkthroughs

• A Structured Way to Represent 
code

• Frame or Timing Diagrams

• Flow Diagrams

• Interaction Diagrams

• Mathematical Proofs

Principal Segments for 
Propellant Valve Control
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Mathematical Proofs
• Floyd/Hoare (1975)

– I/O Assertion Method

– Loop Invarient Statements

– Symbolic Execution

– Hand/Automated Proofs

– Assertions and Invariants Extremely 
Difficult to Formulate

• D. Parnas (1991)

– Rewrite Requirements into A-7 Event and 
Condition Tables

– Handproof using Functional Abstraction 
called Program Function Tables

– Only Proves that Program Fulfills 
Requirements

– At Ontario-Hydro, 7,000 LOC took 30 
man/years

• Proof Procedure is as much in question as 
the Code
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Safety Critical Variable 
Analysis
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Software Hazard Analysis 
Report

Software Fault Tree
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Software Error Root 
Cause Analysis

• For Each Project the Following Data 
Should be Kept

– Life-cycle used

– Start and end date for each phase

– Effort spent in each phase

– Development Environment

– Programming experience

– SEI Index

– Number of lines of code

– Source language

– Target hardware

• For Each Failure, a Summary and Data 
Record Should be Created

Software Error Root 
Cause Analysis Report
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Some Observations

The Trouble with Testing

• Hecht’s Law (1992)

– Infrequently Executed Code has a High 
Failure Rate

• Redundancy Management

• Exception Handling

• Initialization

• Calibration

– Off-nominal Conditions are a Prominent 
Cause of Failure in Well-tested Systems

– Test Profile must be Rich in Off-nominal 
Conditions

– Software Telemetry Needed

• The Butler/Finelli Observations (1991)

– Reliability Quantification to Low Levels is 
Statistically Infeasible

– Separately Programmed Versions do 
NOT Fail Independently
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A Testing Example

Software Risk Assessment 
Methodology

• Elements of PSA

– Uncertainties

– Bayes’ Theorem

– Scenarios

• Master Logic Diagrams (MLD)

• Event Sequence Diagrams (ESD)

• Initiating Event Fault Trees

– Propagation of Uncertainties

• Synthesis into a Programmatic Approach

– Hierarchical Analysis

– Quantitative Methods from Software 
Reliability

– Qualitative Methods from Software 
System-Safety
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Uncertainties about 
Failure Rates

Criteria for Calculation of 
an Application Similarity 

Index
• Design

• Operational Profile

• Type of Project

• Size of Code

• Complexity Metrics

• Development Environment

• Language Used

• Total Test Time

Similarity index is calculated by solving for the 
principal eigenvector of an application 
comparison matrix.
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Complexity Metrics
• Measures

– Size of Code

– Number of Branches

– Program Structure

– Flow of Control

• Used on the Subprogram Level

• Commonly Used Metrics

– SLOC

– McCabe’s Cyclomatic Complexity

– NPATH

– Halstead Software Science

• Highly Correlated with Each other

• Moderate Correlation between 
Complexity Thresholds and Failure 
Rates
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Draft MLD for OP
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Draft Engine Level ESD 
for OP Initiated Scenario 
Main Stage Closed Loop 

Control

Draft Example Fault Tree 
for Initiating Event
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Propagation of 
Uncertainties

• Event Sequence Diagrams are 
Used to Construct Event Trees

• Pivotal Events become Top 
Events

• Software Pivotal Events are 
Intermixed with Phenomenal and 
Failure Pivotal Events

• Each Path through an Event Tree 
Depicts a Possible Scenario

• Probability Distributions for each 
Scenario are created by Monte 
Carlo Simulation

Steps in an SRA

• Review Software

– Purpose

– Functions

– Construction

– Operation

– Software Engineering

• Review Controls

– Reliability Models

– Failure Data

– Problem Reports

– Testing Program

• Develop Scenarios

– Add to Existing or Create New Scenarios

– Employ

• MLDs

• ESDs

• SFTs

• Event Trees
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Steps in an SRA 
(Continued)

• Collect Data
– Four types of data

• Operational failure data and time
• Test data and time
• Failure Rate from similar applications
• Judgment from expertise and experience

– Develop prior distributions
– Modify with test data
– Develop likelihood functions
– Create application specific data
– Probability (Critical Failure | Failure)

• Allocate failure rate over the software 
functions
– By fraction of time during nominal processing
– By Proportion of Similar Failures
– By Complexity of Functions in Scenario
– By Expert Elicitation

• Quantify Scenarios


