Software Risk
Assessment

Analyzing the Fallible
Machine

The Open PSA Initiative

A Blending of Disciplines

Systems Engineering
Software Reliability

Software System-Safety
Probabilistic Risk Assessment
Software Engineering

Software Development
Management

Essential Properties of
Software

¢ Software is constructed from human
thought, or reason.

¢ The material sciences of software are
mathematics and cognitive sciences.

* lts physical existence is a set of instructions
in an English-like code.

» Software does not wear out; but it does get
over-maintained or over-changed.

» Each software construction is unique.

» Software is combinatorially explosive with
respect to possible execution paths.

* When software fails, no deformations or
breakage occur.

» Software fails with little, if any, advanced
warning (we don’t hear the gears grinding).

» Software errors exemplify action at a
distance.

Software System Failures

* Failures are at the intersections of
system viewpoints

/ - Interface
Synla\)!
i \— Specification

Maching
Yes/No
Context -Free Languag

Reason
TH2
Rules
Exceptions

perating Language

stem
¥ Desig
emnr_\"’-r- — Logie
Sensors— = User
o Expectations
e e
Operating Limits Error Catching

Code

Software Testing External Events

* Software system failures are disconnects
between users, software writers, the
operating environment, and the
computing machine

Systems Engineering

Hierarchical Approach

Software is NOT a Standalone
Device

Software is a Component in a
System

— Software controlled devices

— Software supported decisions
Concern is Primarily with
Systems Effects of Software
Errors

— Therac 25

— Precision Errors

Software Reliability

Software is a Product which does
NOT perform Perfectly

Both Parallels and Differences
Between Hardware and Software
Reliability

Refers to a Collection of Concepts
— Number of software errors

— Software RAM

— Software failure rate (F, R, z, H)
— MTTF or MTBF

Techniques which Lower Frequency
and Consequences of Failures

Measurement and Modeling of
Probability of Failure

First, Some Definitions:

Fault
— Something wrong in a program
Error

— A manifestation of a FAULT during
software operation

Failure

— An ERROR which interferes with
system operation

Bug
— Any of the above
Feature

— A BUG to which users have
become accustomed

Software Error Model

Definitions
-E7

« Total number of errors in program

- Ec(‘t)

= Total number of errors corrected after time
7 of debugging

-Er(t) =Er—Ec(7)
- Total number of errors remaining after
time T of debugging

& IT
- Total number of program instructions, or
lines of code

Error Removal Rate for
Two Large Programs

Program A
25—

2
1.5
1
0.5

0

| Morths of Testingebugging | 0 | 1 |2 |2 |4 |5 |86 |7
I

IElmr Rate per 1000 Instructions [l 0.00 0.90/1.10(2.00/1.75(0.90 0.25/0.18

Program B
25

Months of Testing/Debugging ol1|2|3(4|6 |8

Error Rate per 1000 Instructions [l 0.00 0.80 1.00/2.00 1.80 0.75 0.30

Reliability Definitions
-R(t)=e™

» Constant Hazard Reliability Function
-
- MTTF = [tf(t)dt
0
- MTTF: Mean Time to Failure
- MTTF = [R(t)dt
0
» Alternatively, and more simply
! =t
- MTTF = [e™Mdt = -
i)

« For a constant hazard, we obtain the above

The Bathtub Curve of
Failure Rates

z(t)

tl 2 Time

By studying this curve for electrical or
mechanical failure rates we see that:

— Burn-in minimizes early failures

— Scheduled maintenance minimizes late
failures

— Operational failures happen at a
constant rate

Software renames things a bit:
— Burn-in is code release
— Wear-out is code maintenance

The Constant Hazard
Model

- 2(t) = A

« Hazard, or failure rate, function

-f(t) =Ae™

» Failure density function

-R) =™

+ Reliability function

-F(t) = 1 -R(t)
+ Unreliability function

The Constant Hazard
Model

Hazard Function Failure Density Function
2(Y fit)
Q018 001 —
20 | 10
0014 & S, | -
- 0.008
0.012 0.007
(11 P — 0.008
008 0.005
0.004
on 0.003 |
oom L pptele vy]
T g i1 70 30 50 70 80 110
2 4 & 8 10 12 20 40 B0 80 100 120
t in Hours of Testing t Im Hours of Testing
Lambda = 16-02 Lambda = 18-02
Unreliability Function Reliability Function
F(t) R{t)
08 1
o FE) o
06 - 0.8
05 07
04 08
03 05
0z} 04
04t 03
ol 13 S S W R
0 30 50 70 90 110 10 30 S0 70 90 110
0 40 60 B0 100 120 20 40 60 80 100 120
tin Hours of Testing Lin Hours of Testing
Lambda = 1e-02 Lambda = 1e-02

Normalizing the Software
Error Model

T.08 | Total Errors/Total Instructions

; el()| A—h—h A
531 /‘

354

YT

177

* Cumulative Errors per 1000
Instructions for Program A

* We Normalize the Error Rate to the
Number of Instructions in a program:

Er@® _ Er _ Bc®
Ir It It

* Notice that:

g1(1) = —ETT(T) and €,(t) = ——~ET:T)

Software Failure Rate
Model

* Failure Rate is Proportional to
Number of Remaining Errors
— Intuitive
— Model is Simple
— Musa has Data to Support

: - o E R,
2(0) =K1 (1) =K &~ ex(1) |

we define normalized parameters o and p:

_Er _s200)lr
Pp=1Kand o=~

50

2(t) = B(1 - at)

Example of Failure Rate
Estimation

After 1 month of integration testing, a 25,000 line long program was found
to have 12 errors. Since about 5 tests a day were run at 1 hour/test, the
average MTTF was 8 hrs. After 2 months, 18 total errors were found with
a MTTF of 12 hrs.

» Estimation of Model Parameters
2() = gr = S{E1 - Ec(@)]

— K —t
125 = —K[Er - 12]

__K _
083 = K [Er - 18]

125 _ Er-12 _
083 1.5~ Er-18 = Er=30

__K _ —
125 = 2.5“04[30 12] =>K=173.6

2(t) = 6.94 x 103[30 - E¢(7)]

Estimation Example

Family of Failure Rates

Parameterized by Error Removal Rate
2(t)

0.25

0.2 e
0.15

0.1

0.05

0

0 1 2 3 4 5

Time in Months of Debugging/Testing
Estimation will change if a different
error removal rate is assumed or if it
changes during testing.

Reliability and Failure
Rates

* Specification

— Failure rates should be based on
measurements during field operation of
similar successful and unsuccessful
software.

* Prediction
— Early prediction requires a similar project

for study and for failure rate model
parameters; in short, a database.

¢ Measurement
— Record running hours of program during
test and simulation; count software failures;

calculate failure rate during development at
several points.

Confirmation

— Confirm, or update, model during field test
and early operation.

Software System-Safety

* Software Hazard |dentification
* Hazard Assessment
— System Impact
— Consequence Criticality
— Mitigation Possibilities
* Software Failure Mode
Identification

* Design Software “devices” to
Eliminate or Control Hazards

Tools and Techniques for
Software System-Safety
Analysis

* Integrated into the Software Life-
cycle

* Analysis is Iterative
* Code Walkthroughs

* Safety Critical Functions and
Variable Analysis

* HAZOPs
* Fault Tree Analysis

* Software Root Cause Analysis

10

Code Walkthroughs

A Structured Way to Represent
code

Frame or Timing Diagrams
Flow Diagrams
Interaction Diagrams

Mathematical Proofs

Principal Segments for
Propellant Valve Control

11

S TI* 13
[=} & ;-:
: H .
i - IREE =: |8
it i =]
AN
Rigif L HHEH
iaisa 7} i ml
£ - 1
3 : 2
B £ =
£ R Biiy -
3 i HEEH 215 P
2 i ii X = b £
z ES H - =
§) ﬁs"ﬂ T =4 betl v
g g L] 2
§ | il
E - ofif 22 5
u] 5| 8
g | = el ol
B |y £ i ﬁg;g 1| 2
£l S§asgs |= g
2| i £ gogzzea [&
203 : Ei e HH LR
H 9% dds |
g =D
z 8
g H o [fE
i I .4 i
ii BB
" ii i cggl
; G E
£ 3 L E FEELEH
- <ddd < Eodue -
i i
g H q
i g Eé H F

CP40BRO00ZF (V2.5), PART I, VOLUME 2

NOTE2 W

+ START COMMAND

(MOTE 4) OR

poT= 4 oR
et — AT TS

INOTE1 &4)

| Ao eh inamee | pwa Y
o
il it

NETET)

i

(NGTE &

FIXED
DENSITY

roren |

paTES:
1. FROM ANY UODE OF START OR NON-LOCKUP MODE OF MAINSTAGE.
2 FROM ANY NON-LOCKUP MODE OF MAINSTAGE.
3. FAILURE RESPONSES A3 DEFINED UNDER 3.2.4.
4. SHUTDOWN ENABLE COMMAND FOLLOWED BY SHUTDG'WH COMMAND.

5. FROM LAIKSTAGE NORMAL CONTROL CR FIXED DENSITY MODE WHEN OPOV FOSITION COMMAND i3
LIMITED FOA 3 CONSECUTIVE MAJOR S¥CLES,

6. SHUTDOWN PMEUMATICALLY IN FRT.1 COMMAND, 3232 4.1:4.1

7. FROM THAUST LIMITING MODE WHEN CPOY POSITION COWMAND IS NOT LIMITED FOR 3 CONSECUTIVE
MAICR CYELES.

8. 50UD BLOCKS REPRESENT ENGINE OFERATING MOOES.

5. MEAVY LINES REFRESENT NORMAL GPERATING SEGUENCE

10,USHTEN LINGS AEFRERENT OFTIGHAL CAPABILITAS ON OEVIATIONS 0US TO MALPUNCTION DETECTION
AT

ARE NOT ALLINCLUSIVE. THE FULL SET OF POSSIBRLITIES 1S DEFINED 8Y ThHE
COMMAND ACCEPTANCE LOGIC AND THE FAILURE RESPONSE SPECIFIED IN THE TEXT

FIGURE 4
START AND MAINSTAGE PHASE

12

y

i f';"'_'.'."""T

5

Class3

Mathematical Proofs

* Floyd/Hoare (1975)
— /O Assertion Method
— Loop Invarient Statements
— Symbolic Execution
— Hand/Automated Proofs

— Assertions and Invariants Extremely

Difficult to Formulate
* D. Parnas (1991)

— Rewrite Requirements into A-7 Event and
Condition Tables

— Handproof using Functional Abstraction
called Program Function Tables

— Only Proves that Program Fulfills
Requirements

— At Ontario-Hydro, 7,000 LOC took 30
man/years

* Proof Procedure is as much in question as
the Code

13

Safety Critical Variable
Analysis

Variable Name: Oxidzer_Coeff0

Definition: Oxidizer coefficient; loaded with adaptation data

Units: psia/sec/lb Minimum: na Maximum: na
Data Type: Constant Extent: Global Value; 292104

Function Name: Caleulate Misture Ratio (285)

Variable Affected Line How Function Performed | Candidate

Affected for
Analysis
Cxidizer_Flow Raie_Cocfl 17| Assignnent | fOxidizer_ Coeff) w
Lox_Mas_Flow 18 Assignment | [Oxidizer_Flow_Rate_ Coefl) L
Oxidizer_Flow_Rate 19 Assignnsent | f{Lox_Mass_Flaw) ™
Mixture_Batio 23| Assigument | [Oxidizer Flow_Bate) yes
Mixture_Rafwo 21 Boolean fiLox_Mass Flow)' yes
|
- If Lox_Mass Flow is === then Mixwre Ratio is set to 15.999511719

Note: Mixture_Ratio is the only vanable which needs trace continued for assessing
impacts of Oxidizer Coeffl

Main_
:m;%i.w% Gaplers
Bl Mo Goele Tuiatinn
Ponflosa Moo Chele Rasat

Bacass Goupitin Gmptins €—_
?mssﬁ\\&% T~
e

ﬁaw’i. ﬁu\m%plci Gfolz\g._\‘

14

——- B P

*" Job Nu: Job Title: s
Task/Subject:] it
Prepared By: Date: Checked By: Date:

TRACT i Qﬂiﬂr‘.f’nig

SEGUERNTS
© Calel Q Bn{‘hﬂ.%o R
LINE
I+ Driding-_Fho_Bde Goe{'-g- (Dxu![w
F; é“rﬁ‘ i Hwi‘.ig Lgﬁiw H:l -Gt
M T AN R

MCIMMIQAP Flaw Rade 15 ez~
agp.\kun.S\:‘ h}\a”(m*a.n%»’b?

11, ‘r eeﬂ'nma

Sinte Mhe ?-5%: e G-LDM e wst covwe
e TRACE

p TehcEy Mishin Bedio

hine,
R_Tuifepan _Ta = i
g ot SN N

R
;;— 22; ﬁa J‘Mdn Gﬁ Uh?;ﬂ'
Uite: @ UR e 605 iy a
“‘@mﬂ: e innﬁgg‘m’ﬂ.wm ok

Sy ¢ wﬂm& DBk ool UL TEpuder Ok

(hnues

Form PLG-F2 G, Inc. sualee
' JobNe: Job Title:

Tusk/Subject il

Prepared By: Date: Checked By: _ Date:

§j%5’§%~m% i
o Ge»«-wdt oy C&awmj.r
B ool - (e Pep Okt R Tk)
L Ok ff S S
ke ﬂhﬁ@gnu-. oed [%Qm#i'w a
ﬁmﬂhﬂikw me
. MR Tkpcn Ot = D(UR Roprfisud_ Cotost)
Wb v.ék\(:a wewr Wil he wddad) fo -l

@ik Jize ?ﬁhﬂh

B o Bk ohd +

-

LQJ_"S “H-—!-u Voo los Mquugnkgj CMJJ_

15

Propured By: Dute: CochedBy: Dae
L@L Fochone Stk Thean T

8,10 Sz as Larhulize 'ﬁhﬂ‘%\.{_

O R St by Tresi fia

N Me_mepdn Bitpt = LM Bepb_aat)

Fm LT ,gﬁ‘- -

Lt SR
e

Mate: Agei, el ks MJEJ_% Packe

==

P Flow ¢ Cbinav Flow. e ¢—Didinarmul Rie_Cooff

- 5 ne. metfuc |

Job Na: Job Tites SPA

Task/Subject:

Prepared By: Dute: — CheckeaBy: Date: S5
have. wwwﬂ? 2 —ﬁ; Homy,

o0l he Qases!
O PRV Gl Eauates To FRoL Goal_Ch A
@) FTOV_Gee 55 a alluild] % ﬂsévcd‘m‘...gmﬁ
ORI Bef Ol A % oolid] Asburin_ G 0L 4

O bbel= 8 A4 i ol f AT
%‘Lﬁ&ﬂl

BT b Qe b et el
Aoete: ko vaRoe s o e dieiey

- G 4
Wki@m%}ﬁm 4
14 =0 @m%‘%i = Abador Quad . O 4

@32 wour valie

S I wew value
O Sed et 8 Txeoe. B Gmads

TS KGMVCE W lale - 4

16

Software Hazard Analysis

Report
Identification No.

Title

Software Affected
Mission Phase/Major Mode

Hazard Description/Discussion

Action/Status/Disposition

H: ckin,
As Of Date Status Originator
Closure Sign-off

Software Fault Tree

17

Software Error Root

Cause Analysis

* For Each Project the Following Data
Should be Kept

— Life-cycle used

— Start and end date for each phase
— Effort spent in each phase

— Development Environment

— Programming experience

— SEl Index

— Number of lines of code

— Source language

— Target hardware

* For Each Failure, a Summary and Data
Record Should be Created

Software Error Root
Cause Analysis Report

SERCA Number:

Date/Time: Severity of Failure:

Failure Description:

Activity Being Performed:
Method of Detection:

Type of Failure: Unit Complexity: Unit Size:

Fill in AT LEAST ONE of the following:

CPU hours since last failure: Runs since last failure:
Calendar hours since last failure: Labor hours since last failure:
Hours/Interval and number of errors in this interval:

Type of software fix:

Fill in AT LEAST ONE of the following:

CPU hours required to fix: Runs to fix: Calendar hours to fix:

18

Some Observations

= Software

Reliability

= Quantifies
Failure Rate

= Does NOT look
at code

= Relies on
Measurement

= Applies to the
MACRO level

— Results are
"Hard"

= Software

System-Safety

- Does NOT
Quantify

- Analyzes the
code

= Relies on
Judgment

— Applies
Hierarchically

= Results are
"SGﬁ“

The Trouble with Testing

* Hecht’s Law (1992)

— Infrequently Executed Code has a High

Failure Rate

* Redundancy Management

* Exception Handling

* Initialization
* Calibration

— Off-nominal Conditions are a Prominent
Cause of Failure in Well-tested Systems

— Test Profile must be Rich in Off-nominal

Conditions

— Software Telemetry Needed
* The Butler/Finelli Observations (1991)

— Reliability Quantification to Low Levels is

Statistically Infeasible

— Separately Programmed Versions do
NOT Fail Independently

19

A Testing Example

Confidence in Software Failure Rate
z(t) = 1e-05/hr.
Level of Confidence
1

09| 95%
08|
0.7
0.6 50%_
\\

0.5
0.4 /
0.3 :
0.2 5%
0.1 \

s

0
3E+2 1E+3 3E+3 1E+4 3E+4 1E+5 3E+5 1E+6
Hours of Testing

Software Risk Assessment
Methodology

* Elements of PSA
— Uncertainties
— Bayes’ Theorem
— Scenarios
* Master Logic Diagrams (MLD)
* Event Sequence Diagrams (ESD)
* Initiating Event Fault Trees
— Propagation of Uncertainties
* Synthesis into a Programmatic Approach
— Hierarchical Analysis
— Quantitative Methods from Software
Reliability
— Qualitative Methods from Software
System-Safety

20

Uncertainties about
Failure Rates

Distribution of Failure Rates

programs have high similarity index
Frequency

i
i,

Failure Rate/1,000 LOC

0.2
0.15 |

0.1 |

0.05 !

0!

IEFEEET ..
)
&
m
]
[t

Criteria for Calculation of
an Application Similarity

Index
* Design
* Operational Profile
* Type of Project
* Size of Code
* Complexity Metrics
* Development Environment
* Language Used
* Total Test Time

Similarity index is calculated by solving for the
principal eigenvector of an application
comparison matrix.

21

Complexity Metrics

Measures
Size of Code
Number of Branches

Program Structure
Flow of Control
Used on the Subprogram Level

Commonly Used Metrics

—-SLOC

McCabe’s Cyclomatic Complexity
— NPATH

Halstead Software Science

Highly Correlated with Each other

Moderate Correlation between
Complexity Thresholds and Failure
Rates

Mumber of Ada Files measured : 953 FOSB2y
0l (toral) : 12814 nl (average) : 13.4
n2 (total) : 24127 6z {average) 25.2
a (total) : 36941 n (average) : 38.5
Nl (total) 81571 Hl (average) : 851
N2 {total) : 60125 N2 (average) : 2.7
N {total) 141656 N (average) : 147.8
N~ (total) 169260.8 E* (average) : 197.4
v (cotal) : 243270.3 ¥ (average) : 2835
ALOE (kotal) : 15602 ALOC (average) : 20.4
ss (total) : 27839 Sa laverage) 28,8
TLOC (tetal) ¢ 113670 TLOC (average) : 118.5
€ (total) : 4188.3 © (average) : 4.4
VARS (total) : 17930 VARS (average) 18.7
viG) (total) : 4401 viG) (average) : 4.8
Lambda (total) 4394.5 Lambda

T" (total) : 558.5 b

Ads Softwars Metrics Descriptions:

nl - Number of Unique Operatora
n2 - Number of Unique Operands
n - Vocabulary (Number of Unigue Oparators + Number of Unique Operands)
N1 - Total Number of Operator Occurances
x2 - Total Wumber of Operand Occurences
w - Size (Token count = Total Number of Operatsr + Opsrand Dccursncss)
u - Estimated Program Length
{Length Bquation = (nl x lagZ(nl) + n2 x leg2{nZ)}}
v - Volume (in bits = N x log2(n), A program nseds approximately
1log2 (n) bits to represent the Vocabulary n)
ALOC - Ada Lines of Cods (counts 1 Ada line of code per semi=colon)
s - Linee of Code (counts all non-blank and non-comment linaes)
TLOC - Total Lines of Code (all lines of code including blank and comment
nes)
c = Language Constant (N / Sa (for Fortran € is approximately 7.0j)
VARS - MNumber of Unigue Variables (n2 - unique constants - labels)
w(G) - Cyclomatic Complexity (McCabe's metric - number of distinct basie

paths through a progeam)

Lambda - Language Levael Constant

T - Estimated Progranming Time (in man-hours) = Effert/Beta {whers
Beta = Stroud's Number = number of elementary mental
discriminations/second)

22

Bayesian Update

Pk Procabity of U
PRGNS e grurm Rste P Curaie LI Comie |
e [=T ImEe IGEm
550608 87sEQ 1800 L0 smE
Pre 108602 2008 ssseqr areEor
85008 1158802 3seEa SI0EQ 14D
700E03 21380 ERpre oosEQl 210ED)
780E.08 2m0E02 amen smEQ1 27EESH
a0EDs 3256 121801 7BER2 3S0EN
BRED 3mEw 158EH I¥ER ADEN
S00E-03 e 2000 I;mEW ABED
a50E08 asoEce 2a860 emEs BeEo
1 mE02 smEDR 29260 EWEM BEM
10502 amED JatEm STWEMR EBGED
110802 AwER 3906 saE0T 7HED
[Rr amsEC2 A3BEQ1 sMEQ TRED
120802 ATEQR ABeEM IWER BHEQ
12me 02 s S3ED amecs esEar
L0 e s75EQ1 2mER BMEDN
138 Aoz s1EEQT 2mECT moED
1ae amea 84601 g azem
1z smEm ey 13EQ BuEd)
P amEa TmE00 1mEce emEal
s 2w T8ED 1mE@ eeEQl
recem 270 7mE01 smeos armear
= 24T BOMEQ BsEQ a7eEdl
1 e 270 Ba8E01 sz smEal
17sEa 200802 B4BE01 AMECS SBEEAN
1 12 e ames smeat
18522 180E02 BBOEDY 2% AsEA
1908 140e02 aeED @ asEd
19500 127802 o 1SEQ 4sSEN

Draft MLD for OP

23

Draft Engine Level ESD

for OP Initiated Scenario

Main Stage Closed Loop
Control

Draft Example Fault Tree
for Initiating Event

FPOV STAYS OR MOVES
OFEN WHEN COMMANDED
70 00 OTHERWISE

A

FRILS TO PESPOND TO ACTUATES 10O FAST ERRONEOLIS FEEDBACK
POSTTION COMMANDS OF T0O SLOW STGNAL

OO

24

Propagation of
Uncertainties

* Event Sequence Diagrams are
Used to Construct Event Trees

* Pivotal Events become Top
Events

» Software Pivotal Events are
Intermixed with Phenomenal and
Failure Pivotal Events

* Each Path through an Event Tree
Depicts a Possible Scenario

* Probability Distributions for each
Scenario are created by Monte
Carlo Simulation

Steps in an SRA

* Review Software
— Purpose
— Functions
— Construction
— Operation
— Software Engineering
* Review Controls
— Reliability Models
— Failure Data
— Problem Reports
— Testing Program
* Develop Scenarios
— Add to Existing or Create New Scenarios
— Employ
* MLDs
* ESDs
* SFTs
* Event Trees

25

Steps in an SRA
(Continued)

* Collect Data
— Four types of data
* Operational failure data and time
* Test data and time
* Failure Rate from similar applications
* Judgment from expertise and experience
Develop prior distributions
— Modify with test data
— Develop likelihood functions
— Create application specific data
— Probability (Critical Failure | Failure)
* Allocate failure rate over the software
functions
— By fraction of time during nominal processing
— By Proportion of Similar Failures
— By Complexity of Functions in Scenario
— By Expert Elicitation
* Quantify Scenarios

26

