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Essential Properties of
Software

¢ Software is constructed from human
thought, or reason.

¢ The material sciences of software are
mathematics and cognitive sciences.

* lts physical existence is a set of instructions
in an English-like code.

» Software does not wear out; but it does get
over-maintained or over-changed.

» Each software construction is unique.

» Software is combinatorially explosive with
respect to possible execution paths.

* When software fails, no deformations or
breakage occur.

» Software fails with little, if any, advanced
warning (we don’t hear the gears grinding).

» Software errors exemplify action at a
distance.

Software System Failures

* Failures are at the intersections of
system viewpoints
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* Software system failures are disconnects
between users, software writers, the
operating environment, and the
computing machine




Systems Engineering

Hierarchical Approach

Software is NOT a Standalone
Device

Software is a Component in a
System

— Software controlled devices

— Software supported decisions
Concern is Primarily with
Systems Effects of Software
Errors

— Therac 25

— Precision Errors

Software Reliability

Software is a Product which does
NOT perform Perfectly

Both Parallels and Differences
Between Hardware and Software
Reliability

Refers to a Collection of Concepts
— Number of software errors

— Software RAM

— Software failure rate (F, R, z, H)
— MTTF or MTBF

Techniques which Lower Frequency
and Consequences of Failures

Measurement and Modeling of
Probability of Failure




First, Some Definitions:

Fault
— Something wrong in a program
Error

— A manifestation of a FAULT during
software operation

Failure

— An ERROR which interferes with
system operation

Bug
— Any of the above
Feature

— A BUG to which users have
become accustomed

Software Error Model

Definitions
-E7

« Total number of errors in program

- Ec(‘t)

= Total number of errors corrected after time
7 of debugging

-Er(t) =Er—Ec(7)
- Total number of errors remaining after
time T of debugging

& IT
- Total number of program instructions, or
lines of code




Error Removal Rate for
Two Large Programs

Program A
25—
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25

Months of Testing/Debugging ol1|2|3(4|6 |8
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Reliability Definitions
-R(t)=e™

» Constant Hazard Reliability Function
-
- MTTF = [ tf(t)dt
0
- MTTF: Mean Time to Failure
- MTTF = [ R(t)dt
0
» Alternatively, and more simply
! =t
- MTTF = [ e™Mdt = -
i )

« For a constant hazard, we obtain the above




The Bathtub Curve of
Failure Rates

z(t)

tl 2 Time

By studying this curve for electrical or
mechanical failure rates we see that:

— Burn-in minimizes early failures

— Scheduled maintenance minimizes late
failures

— Operational failures happen at a
constant rate

Software renames things a bit:
— Burn-in is code release
— Wear-out is code maintenance

The Constant Hazard
Model

- 2(t) = A

« Hazard, or failure rate, function

-f(t) =Ae™

» Failure density function

-R) =™

+ Reliability function

-F(t) = 1 -R(t)
+ Unreliability function




The Constant Hazard
Model

Hazard Function Failure Density Function
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Normalizing the Software
Error Model

T.08 | Total Errors/Total Instructions

; el()| A—h—h A
531 /‘

354

YT

177

* Cumulative Errors per 1000
Instructions for Program A

* We Normalize the Error Rate to the
Number of Instructions in a program:

Er@® _ Er _ Bc®
Ir It It

* Notice that:

g1(1) = —ETT(T) and €,(t) = ——~ET:T)




Software Failure Rate
Model

* Failure Rate is Proportional to
Number of Remaining Errors
— Intuitive
— Model is Simple
— Musa has Data to Support

: - o E R,
2(0) =K1 (1) =K &~ ex(1) |

we define normalized parameters o and p:

_Er _s200)lr
Pp=1Kand o=~

50

2(t) = B(1 - at)

Example of Failure Rate
Estimation

After 1 month of integration testing, a 25,000 line long program was found
to have 12 errors. Since about 5 tests a day were run at 1 hour/test, the
average MTTF was 8 hrs. After 2 months, 18 total errors were found with
a MTTF of 12 hrs.

» Estimation of Model Parameters
2() = gr = S{E1 - Ec(@)]

— K —t
125 = —K[Er - 12]

__K _
083 = K [Er - 18]

125 _ Er-12 _
083 1.5~ Er-18 = Er=30

__K _ —
125 = 2.5“04[30 12] =>K=173.6

2(t) = 6.94 x 103[30 - E¢(7)]




Estimation Example

Family of Failure Rates

Parameterized by Error Removal Rate
2(t)

0.25

0.2 e
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Time in Months of Debugging/Testing
Estimation will change if a different
error removal rate is assumed or if it
changes during testing.

Reliability and Failure
Rates

* Specification

— Failure rates should be based on
measurements during field operation of
similar successful and unsuccessful
software.

* Prediction
— Early prediction requires a similar project

for study and for failure rate model
parameters; in short, a database.

¢ Measurement
— Record running hours of program during
test and simulation; count software failures;

calculate failure rate during development at
several points.

Confirmation

— Confirm, or update, model during field test
and early operation.




Software System-Safety

* Software Hazard |dentification
* Hazard Assessment
— System Impact
— Consequence Criticality
— Mitigation Possibilities
* Software Failure Mode
Identification

* Design Software “devices” to
Eliminate or Control Hazards

Tools and Techniques for
Software System-Safety
Analysis

* Integrated into the Software Life-
cycle

* Analysis is Iterative
* Code Walkthroughs

* Safety Critical Functions and
Variable Analysis

* HAZOPs
* Fault Tree Analysis

* Software Root Cause Analysis

10



Code Walkthroughs

A Structured Way to Represent
code

Frame or Timing Diagrams
Flow Diagrams
Interaction Diagrams

Mathematical Proofs

Principal Segments for
Propellant Valve Control

11
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Mathematical Proofs

* Floyd/Hoare (1975)
— /O Assertion Method
— Loop Invarient Statements
— Symbolic Execution
— Hand/Automated Proofs

— Assertions and Invariants Extremely

Difficult to Formulate
* D. Parnas (1991)

— Rewrite Requirements into A-7 Event and
Condition Tables

— Handproof using Functional Abstraction
called Program Function Tables

— Only Proves that Program Fulfills
Requirements

— At Ontario-Hydro, 7,000 LOC took 30
man/years

* Proof Procedure is as much in question as
the Code

13



Safety Critical Variable
Analysis

Variable Name: Oxidzer_Coeff0

Definition: Oxidizer coefficient; loaded with adaptation data

Units: psia/sec/lb Minimum: na Maximum: na
Data Type: Constant  Extent: Global Value; 292104

Function Name: Caleulate Misture Ratio (285)

Variable Affected Line How Function Performed | Candidate

Affected for
Analysis
Cxidizer_Flow Raie_Cocfl 17| Assignnent | fOxidizer_ Coeff) w
Lox_Mas_Flow 18 Assignment | [Oxidizer_Flow_Rate_ Coefl) L
Oxidizer_Flow_Rate 19 Assignnsent | f{Lox_Mass_Flaw) ™
Mixture_Batio 23| Assigument | [Oxidizer Flow_Bate) yes
Mixture_Rafwo 21 Boolean fiLox_Mass Flow)' yes
|
- If Lox_Mass Flow is === then Mixwre Ratio is set to 15.999511719

Note: Mixture_Ratio is the only vanable which needs trace continued for assessing
impacts of Oxidizer Coeffl
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Software Hazard Analysis

Report
Identification No.

Title

Software Affected
Mission Phase/Major Mode

Hazard Description/Discussion

Action/Status/Disposition

H: ckin,
As Of Date Status Originator
Closure Sign-off

Software Fault Tree

17



Software Error Root

Cause Analysis

* For Each Project the Following Data
Should be Kept

— Life-cycle used

— Start and end date for each phase
— Effort spent in each phase

— Development Environment

— Programming experience

— SEl Index

— Number of lines of code

— Source language

— Target hardware

* For Each Failure, a Summary and Data
Record Should be Created

Software Error Root
Cause Analysis Report

SERCA Number:

Date/Time: Severity of Failure:

Failure Description:

Activity Being Performed:
Method of Detection:

Type of Failure: Unit Complexity: Unit Size:

Fill in AT LEAST ONE of the following:

CPU hours since last failure: Runs since last failure:
Calendar hours since last failure: Labor hours since last failure:
Hours/Interval and number of errors in this interval:

Type of software fix:

Fill in AT LEAST ONE of the following:

CPU hours required to fix: Runs to fix: Calendar hours to fix:

18



Some Observations

= Software

Reliability

= Quantifies
Failure Rate

= Does NOT look
at code

= Relies on
Measurement

= Applies to the
MACRO level

— Results are
"Hard"

= Software

System-Safety

- Does NOT
Quantify

- Analyzes the
code

= Relies on
Judgment

— Applies
Hierarchically

= Results are
"SGﬁ“

The Trouble with Testing

* Hecht’s Law (1992)

— Infrequently Executed Code has a High

Failure Rate

* Redundancy Management

* Exception Handling

* Initialization
* Calibration

— Off-nominal Conditions are a Prominent
Cause of Failure in Well-tested Systems

— Test Profile must be Rich in Off-nominal

Conditions

— Software Telemetry Needed
* The Butler/Finelli Observations (1991)

— Reliability Quantification to Low Levels is

Statistically Infeasible

— Separately Programmed Versions do
NOT Fail Independently

19



A Testing Example

Confidence in Software Failure Rate
z(t) = 1e-05/hr.
Level of Confidence
1

09| 95%
08|
0.7
0.6 50%_
\\

0.5
0.4 /
0.3 :
0.2 5%
0.1 \

s

0
3E+2 1E+3 3E+3 1E+4 3E+4 1E+5 3E+5 1E+6
Hours of Testing

Software Risk Assessment
Methodology

* Elements of PSA
— Uncertainties
— Bayes’ Theorem
— Scenarios
* Master Logic Diagrams (MLD)
* Event Sequence Diagrams (ESD)
* Initiating Event Fault Trees
— Propagation of Uncertainties
* Synthesis into a Programmatic Approach
— Hierarchical Analysis
— Quantitative Methods from Software
Reliability
— Qualitative Methods from Software
System-Safety

20



Uncertainties about
Failure Rates

Distribution of Failure Rates

programs have high similarity index
Frequency

i
i,

Failure Rate/1,000 LOC

0.2
0.15 |

0.1 |

0.05 !

0!

IEFEEET ..
)
&
m
]
[t

Criteria for Calculation of
an Application Similarity

Index
* Design
* Operational Profile
* Type of Project
* Size of Code
* Complexity Metrics
* Development Environment
* Language Used
* Total Test Time

Similarity index is calculated by solving for the
principal eigenvector of an application
comparison matrix.
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Complexity Metrics

Measures
Size of Code
Number of Branches

Program Structure
Flow of Control
Used on the Subprogram Level

Commonly Used Metrics

—-SLOC

McCabe’s Cyclomatic Complexity
— NPATH

Halstead Software Science

Highly Correlated with Each other

Moderate Correlation between
Complexity Thresholds and Failure
Rates

Mumber of Ada Files measured : 953 FOSB2y
0l (toral) : 12814 nl (average) : 13.4
n2 (total) : 24127 6z {average) 25.2
a (total) : 36941 n (average) : 38.5
Nl (total) 81571 Hl (average) : 851
N2 {total) : 60125 N2 (average) : 2.7
N {total) 141656 N (average) : 147.8
N~ (total) 169260.8 E* (average) : 197.4
v (cotal) : 243270.3 ¥ (average) : 2835
ALOE (kotal) : 15602 ALOC (average) : 20.4
ss (total) : 27839 Sa laverage) 28,8
TLOC (tetal) ¢ 113670 TLOC (average) : 118.5
€ (total) : 4188.3 © (average) : 4.4
VARS (total) : 17930 VARS (average) 18.7
viG) (total) : 4401 viG) (average) : 4.8
Lambda (total) 4394.5 Lambda

T" (total) : 558.5 b

Ads Softwars Metrics Descriptions:

nl -  Number of Unique Operatora
n2 - Number of Unique Operands
n - Vocabulary (Number of Unigue Oparators + Number of Unique Operands)
N1 - Total Number of Operator Occurances
x2 - Total Wumber of Operand Occurences
w - Size (Token count = Total Number of Operatsr + Opsrand Dccursncss)
u - Estimated Program Length
{Length Bquation = (nl x lagZ(nl) + n2 x leg2{nZ)}}
v - Volume (in bits = N x log2(n), A program nseds approximately
1log2 (n) bits to represent the Vocabulary n)
ALOC - Ada Lines of Cods (counts 1 Ada line of code per semi=colon)
s - Linee of Code (counts all non-blank and non-comment linaes)
TLOC - Total Lines of Code (all lines of code including blank and comment
nes)
c = Language Constant (N / Sa (for Fortran € is approximately 7.0j)
VARS -  MNumber of Unigue Variables (n2 - unique constants - labels)
w(G) - Cyclomatic Complexity (McCabe's metric - number of distinct basie

paths through a progeam)

Lambda - Language Levael Constant

T - Estimated Progranming Time (in man-hours) = Effert/Beta {whers
Beta = Stroud's Number = number of elementary mental
discriminations/second)

22



Bayesian Update
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Draft MLD for OP
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Draft Engine Level ESD

for OP Initiated Scenario

Main Stage Closed Loop
Control

Draft Example Fault Tree
for Initiating Event

FPOV STAYS OR MOVES
OFEN WHEN COMMANDED
70 00 OTHERWISE

A

FRILS TO PESPOND TO ACTUATES 10O FAST ERRONEOLIS FEEDBACK
POSTTION COMMANDS OF T0O SLOW STGNAL

OO
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Propagation of
Uncertainties

* Event Sequence Diagrams are
Used to Construct Event Trees

* Pivotal Events become Top
Events

» Software Pivotal Events are
Intermixed with Phenomenal and
Failure Pivotal Events

* Each Path through an Event Tree
Depicts a Possible Scenario

* Probability Distributions for each
Scenario are created by Monte
Carlo Simulation

Steps in an SRA

* Review Software
— Purpose
— Functions
— Construction
— Operation
— Software Engineering
* Review Controls
— Reliability Models
— Failure Data
— Problem Reports
— Testing Program
* Develop Scenarios
— Add to Existing or Create New Scenarios
— Employ
* MLDs
* ESDs
* SFTs
* Event Trees

25



Steps in an SRA
(Continued)

* Collect Data
— Four types of data
* Operational failure data and time
* Test data and time
* Failure Rate from similar applications
* Judgment from expertise and experience
Develop prior distributions
— Modify with test data
— Develop likelihood functions
— Create application specific data
— Probability (Critical Failure | Failure)
* Allocate failure rate over the software
functions
— By fraction of time during nominal processing
— By Proportion of Similar Failures
— By Complexity of Functions in Scenario
— By Expert Elicitation
* Quantify Scenarios
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